Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2301053120, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346186

RESUMO

While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Escherichia coli Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C'-15N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra.


Assuntos
Temperatura Baixa , Proteínas , Temperatura , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas/química , Ressonância Magnética Nuclear Biomolecular
2.
ACS Appl Mater Interfaces ; 15(27): 32792-32802, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379160

RESUMO

Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.

3.
J Phys Chem A ; 127(25): 5511-5519, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37318142

RESUMO

Solution-state 2D correlation experiments increase signal-to-noise, provide improved resolution, and inform about molecular connectivity. NMR experiments are compromised when the nuclei have broad chemical shift ranges that exceed the bandwidth of the experiment. Spectra acquired under these conditions are unphasable and artifact-prone, and peaks may disappear from the spectrum altogether. Existing remedies provide usable spectra only in specific experimental contexts. Here, we introduce a general broadband strategy that leads to a library of high performing NMR experiments. We achieve arbitrary and independent evolution of NMR interactions by only changing delays in our pulse block, letting the block replace inversion elements in any NMR experiment. The experiments improve the experimental bandwidth for both nuclei by an order of magnitude over conventional sequences, covering chemical shift ranges of most molecules, even at ultrahigh field. This library enables robust spectroscopy of molecules such as perfluorinated oils (19F{13C}) and fluorophosphorous compounds in battery electrolytes (19F{31P}).

4.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747652

RESUMO

T-Cell Intracellular Antigen-1 (TIA1) is a 43 kDa multi-domain RNA-binding protein involved in stress granule formation during eukaryotic stress response, and has been implicated in neurodegenerative diseases including Welander distal myopathy and amyotrophic lateral sclerosis. TIA1 contains three RNA recognition motifs (RRMs), which are capable of binding nucleic acids and a C-terminal Q/N-rich prion-related domain (PRD) which has been variously described as intrinsically disordered or prion inducing and is believed to play a role in promoting liquid-liquid phase separation connected with the assembly of stress granule formation. Motivated by the fact that our prior work shows RRMs 2 and 3 are well-ordered in an oligomeric full-length form, while RRM1 and the PRD appear to phase separate, the present work addresses whether the oligomeric form is functional and competent for binding, and probes the consequences of nucleic acid binding for oligomerization and protein conformation change. New SSNMR data show that ssDNA binds to full-length oligomeric TIA1 primarily at the RRM2 domain, but also weakly at the RRM3 domain, and Zn 2+ binds primarily to RRM3. Binding of Zn 2+ and DNA was reversible for the full-length wild type oligomeric form, and did not lead to formation of amyloid fibrils, despite the presence of the C-terminal prion-related domain. While TIA1:DNA complexes appear as long "daisy chained" structures, the addition of Zn 2+ caused the structures to collapse. We surmise that this points to a regulatory role for Zn 2+ . By occupying various "half" binding sites on RRM3 Zn 2+ may shift the nucleic acid binding off RRM3 and onto RRM2. More importantly, the use of different half sites on different monomers may introduce a mesh of crosslinks in the supramolecular complex rendering it compact and markedly reducing the access to the nucleic acids (including transcripts) from solution.

5.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747795

RESUMO

While low temperature NMR holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in E. coli DHFR at 105K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of N i+1 to Ψ i . With selective 15 N and 13 C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13 C'- 15 N correlation spectrum. For this unique amide we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin 114 ± 7 for the major peak, and 150 ± 8 and 164 ± 16° for the minor peak as contrasted with 118 for the X-ray crystal structure (and 118-130 for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low temperature NMR spectra. Significance Statement: Understanding protein conformational flexibility is essential for insights into the molecular basis of protein function and the thermodynamics of proteins. Here we investigate the ensemble of protein backbone conformations in a frozen protein freezing, which is likely a close representation for the ensemble in rapid equilibrium at room temperature. Various conformers are spectrally resolved due to the exquisite sensitivity of NMR shifts to local conformations, and NMR methods allow us to directly probe the torsion angles corresponding to each band of chemical shifts.

6.
J Magn Reson ; 347: 107353, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36571906

RESUMO

That the NMR transition of a spin-1/2 nucleus is split into n evenly spaced lines by indirect dipole-dipole (J) coupling to n magnetically equivalent nuclei, whose successive amplitudes follow the nth row of Pascal's triangle, is an elementary result in NMR. Described here are a family of less well known multiplet structures with different amplitudes for the evenly spaced lines. The amplitudes can be derived from the nth row of Pascal's triangle by weighting the corresponding value of the row by z or z2, where z is related to the summed magnetic quantum number of the magnetically equivalent spins. z1-multiplets have been described in INEPT experiments. A z2-multiplet can be indirectly observed in HSQC experiments when the decoupling pulse during t1 is removed, i.e., an F1-coupled HSQC. While not difficult to generate and despite some reported usefulness, to the best of our knowledge, z2-multiplets have not been rigorously described in previous literature.

7.
mBio ; 13(6): e0235822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214571

RESUMO

FtsZ filaments are the major structural component of the bacterial Z ring and are drivers of bacterial division. Crystal structures for FtsZ from some Gram-positive bacteria in the presence of GTP analogs suggest the possibility of a high-energy, "tense" conformation. It remains important to elucidate whether this tense form is the dominant form in filaments. Using dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) and differential isotopic labeling, we directly detected residues located at the intermonomer interface of GTP-bound wild-type (WT) Escherichia coli FtsZ filaments. We combined chemical shift prediction, homology modeling, and heteronuclear dipolar recoupling techniques to characterize the E. coli FtsZ filament interface and demonstrated that the monomers in active filaments assume a tense conformation. IMPORTANCE Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many questions remain about how the filaments form and function. Recently, a second monomer form was identified in Staphylococcus aureus that has far-reaching implications for FtsZ structure and function. However, to date, this form has not been directly observed outside S. aureus. In this study, we used solid-state NMR and dynamic nuclear polarization (DNP) to directly study the filaments of E. coli FtsZ to demonstrate that E. coli FtsZ filaments are primarily composed of this second, "tense" form of the monomer. This work is the first time GTP-bound, wild-type FtsZ filaments have been studied directly at atomic resolution and is an important step forward for the study of FtsZ filaments.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Espectroscopia de Ressonância Magnética , Guanosina Trifosfato/metabolismo
8.
JACS Au ; 2(8): 1889-1898, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36032529

RESUMO

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by µ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

9.
Proc Natl Acad Sci U S A ; 117(50): 31832-31837, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257579

RESUMO

TIA1, a protein critical for eukaryotic stress response and stress granule formation, is structurally characterized in full-length form. TIA1 contains three RNA recognition motifs (RRMs) and a C-terminal low-complexity domain, sometimes referred to as a "prion-related domain" or associated with amyloid formation. Under mild conditions, full-length (fl) mouse TIA1 spontaneously oligomerizes to form a metastable colloid-like suspension. RRM2 and RRM3, known to be critical for function, are folded similarly in excised domains and this oligomeric form of apo fl TIA1, based on NMR chemical shifts. By contrast, the termini were not detected by NMR and are unlikely to be amyloid-like. We were able to assign the NMR shifts with the aid of previously assigned solution-state shifts for the RRM2,3 isolated domains and homology modeling. We present a micellar model of fl TIA1 wherein RRM2 and RRM3 are colocalized, ordered, hydrated, and available for nucleotide binding. At the same time, the termini are disordered and phase separated, reminiscent of stress granule substructure or nanoscale liquid droplets.


Assuntos
Proteínas Intrinsicamente Desordenadas/ultraestrutura , Antígeno-1 Intracelular de Células T/ultraestrutura , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Motivos de Ligação ao RNA , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Antígeno-1 Intracelular de Células T/metabolismo
10.
J Chem Phys ; 153(10): 104201, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933302

RESUMO

The power of chemical shift anisotropy (CSA) measurements for probing structure and dynamics of molecules has been long recognized. NMR pulse sequences that allow measurement of CSA values in an indirect dimension of a protein correlation spectrum have been employed for aliphatic groups, but for practical reasons, carbonyl functional groups have been little studied, despite the fact that carbonyls are expected to give particularly varied and informative CSA values. Specifically, the wide spectral widths of carbonyl tensors make their measurements difficult with typically attainable spectrometer settings. We present here an extended family of experiments that enable the recovery of static CSA lineshapes in an indirect dimension of magic angle spinning (MAS) solid-state NMR experiments, except for various real valued scaling factors. The experiment is suitable for uniformly labeled material, at moderate MAS rates (10 kHz-30 kHz) and at higher magnetic fields (ν0H > 600 MHz). Specifically, the experiments are based on pulse sequence elements from a previous commonly used pulse sequence for CSA measurement, recoupling of chemical shift anisotropy (ROCSA), while modification of scaling factors is achieved by interspersing different blocks of C-elements of the same Cnn 1 cycle. Using experimental conditions similar to the parent ROCSA sequence, a CSA scaling factor between 0 and 0.272 can be obtained, thus allowing a useful practical range of possibilities in experimental conditions for measurement of larger CSA values. Using these blocks, it is also possible to make a constant-time CSA recoupling sequence. The effectiveness of this approach, fROCSA, is shown on model compounds 1-13C-Gly, U-13C,15N-l-His, and microcrystalline U-13C,15N-Ubiquitin.


Assuntos
Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Algoritmos , Anisotropia , Isótopos de Carbono/análise , Campos Magnéticos , Isótopos de Nitrogênio/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Ubiquitina/química
11.
ACS Appl Bio Mater ; 2(7): 2840-2852, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030818

RESUMO

The cement produced by the Eastern oyster, Crassostrea virginica, may provide blueprints for waterproof biocompatible adhesives synthesized under benign conditions. The composition of this organic-inorganic composite, and of an organic extract, was characterized by 13C and 1H solid-state NMR and also compared with C. virginica shell and its organic extract. Quantification of the organic fraction by 13C and 1H NMR spectroscopy consistently showed 3 wt % organics in cement, which was higher than the 1.2 wt % in the shell. According to 13C NMR with spectral editing, the organic fraction of cement consisted of 73% protein, 25% polysaccharide, and 2% lipid. The organic acid-insoluble extract from the cement was mostly made up of protein remarkably rich in alanine and glycine. The unusual amino acid content matched the composition of silk-like proteins in the C. virginica or C. gigas genomes, including spidron-1-like and shelk2 previously found to be upregulated at the mantle edge. The corresponding extract from the shell contained 32% glycine and was also enriched in serine but not alanine, which was consistent with a previous wet-chemistry study. The 13C and 1H NMR spin-lattice relaxation in the organic component of cement and the acid-insoluble extract was 4-40 times faster than in the shell and showed pronounced nonexponentiality, indicating a high concentration of persistent radicals in the organic components of cement, in agreement with a prior EPR study. The presence of radicals in the acid-insoluble cement fraction was confirmed by observation of a paramagnetic shift anisotropy. 13C NMR corroborated prior observations that the calcium carbonate in the shell and pseudonacre was mostly calcite, whereas cement had an enhanced aragonite fraction. Surprisingly, 1H-13C NMR indicated that aragonite in cement was more distant from the organic fraction than was calcite. These results help advance our understanding of how oysters achieve adhesion within their wet environment.

12.
J Magn Reson ; 296: 130-137, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253322

RESUMO

We examine coherent evolution of spin-locked magnetization during magic-angle spinning (MAS), in the context of relaxation experiments designed to probe chemical exchange (rotating-frame relaxation (R1ρ)). Coherent evolution is expected in MAS based rotating-frame relaxation decay experiments if matching conditions are met (such as, ω1 = nωr) and if the chemical shielding anisotropy (CSA) is substantial. We show here using numerical simulations and experiments that even when such matching requirements are avoided (e.g., ω1 < 0.5ωr, ∼1.5ωr, >2.5ωr), coherent evolution of spin-locked magnetization with large CSA is still considerable. The coherent evolution has important consequences on the analysis of relaxation decay and the ability to extract accurate information of interest about dynamics. We present a pulse sequence that employs rotary echoes and refocuses CSA contributions, allowing for more sensitive measurement of rotating-frame relaxation with less interference from coherent evolution. In practice, the proposed pulse sequence, REfocused CSA Rotating-frame Relaxation (RECRR) is robust to carrier frequency offset, B1-field inhomogeneity, and slight miscalibrations of the refocusing pulses.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Anisotropia , Simulação por Computador
13.
J Magn Reson ; 287: 110-112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335163

RESUMO

We demonstrate that N,N-Diethylmethylamine (DEMA) is a useful compound for shimming the magnetic field when doing NMR experiments at room temperature and 130 K, near the temperature used in many dynamic nuclear polarization (DNP) experiments. The resonance assigned to the N-methyl carbon in DEMA at 14.7 T and 140 K has a full-width-half-max linewidth of <4 Hz and has a spin-lattice relaxation time of 0.17 ±â€¯0.03 s.


Assuntos
Dietilaminas/química , Espectroscopia de Ressonância Magnética/normas , Pressão , Temperatura
14.
J Am Chem Soc ; 138(34): 10758-61, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27529637

RESUMO

We report that phosphotyrosine-cholesterol conjugates effectively and selectively kill cancer cells, including platinum-resistant ovarian cancer cells. The conjugate increases the degree of noncovalent oligomerization upon enzymatic dephosphorylation in aqueous buffer. This enzymatic conversion also results in the assembly of the cholesterol conjugates inside and outside cells and leads to cell death. Preliminary mechanistic studies suggest that the formed assemblies of the conjugates not only interact with actin filaments and microtubules but also affect lipid rafts. As the first report of multifaceted supramolecular assemblies of cholesterol conjugates against cancer cells, this work illustrates the integration of enzyme catalysis and self-assembly of essential biological small molecules on and inside cancer cells as a promising strategy for developing multifunctional therapeutics to treat drug-resistant cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Colesterol/química , Colesterol/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Enzimas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fosfotirosina/química
15.
J Am Chem Soc ; 138(32): 10232-7, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27443860

RESUMO

The manufacture of advanced polyolefins has been critically enabled by the development of single-site heterogeneous catalysts. Metal-organic frameworks (MOFs) show great potential as heterogeneous catalysts that may be designed and tuned on the molecular level. In this work, exchange of zinc ions in Zn5Cl4(BTDD)3, H2BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin) (MFU-4l) with reactive metals serves to establish a general platform for selective olefin polymerization in a high surface area solid promising for industrial catalysis. Characterization of polyethylene produced by these materials demonstrates both molecular and morphological control. Notably, reactivity approaches single-site catalysis, as evidenced by low polydispersity indices, and good molecular weight control. We further show that these new catalysts copolymerize ethylene and propylene. Uniform growth of the polymer around the catalyst particles provides a mechanism for controlling the polymer morphology, a relevant metric for continuous flow processes.

16.
J Biomol NMR ; 64(2): 115-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26787537

RESUMO

We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command-line Python script (PLUQin), which should be useful in protein structure determination. The refined chemical shift distributions are utilized in a simple quality test (SQAT) that should be applied to new protein NMR data before deposition in a databank, and they could benefit many other chemical-shift based tools.


Assuntos
Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular
17.
J Am Chem Soc ; 138(6): 1780-3, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26813149

RESUMO

A porous metal-organic framework Zr6O4(OH)4(L-PdX)3 (1-X) has been constructed from Pd diphosphinite pincer complexes ([L-PdX](4-) = [(2,6-(OPAr2)2C6H3)PdX](4-), Ar = p-C6H4CO2(-), X = Cl, I). Reaction of 1-X with PhI(O2CCF3)2 facilitates I(-)/CF3CO2(-) ligand exchange to generate 1-TFA and I2 as a soluble byproduct. 1-TFA is an active and recyclable catalyst for transfer hydrogenation of benzaldehydes using formic acid as a hydrogen source. In contrast, the homogeneous analogue (t)Bu(L-PdTFA) is an ineffective catalyst owing to decomposition under the catalytic conditions, highlighting the beneficial effects of immobilization.

18.
J Biomol NMR ; 57(3): 281-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24132778

RESUMO

A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.


Assuntos
Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Algoritmos , Método de Monte Carlo , Proteínas/genética , Deleção de Sequência
19.
Protein Sci ; 22(11): 1623-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24023039

RESUMO

The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and found them to depend on the membrane composition. In 2D (13)C DARR correlation spectra, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-bound M2FL exhibits several peaks at ß-sheet chemical shifts, which result from water-exposed extramembrane residues. In contrast, M2FL bound to cholesterol-containing membranes gives predominantly α-helical chemical shifts. Two-dimensional J-INADEQUATE spectra and variable-temperature (13)C spectra indicate that DMPC-bound M2FL is highly dynamic while the cholesterol-containing membranes significantly immobilize the protein at physiological temperature. Chemical-shift prediction for various secondary-structure models suggests that the ß-strand is located at the N-terminus of the DMPC-bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain-truncated M2(21-97), which no longer exhibits ß-sheet chemical shifts in the DMPC-bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol-rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the ß-strand location suggests that chemical-shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.


Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/química , Colesterol/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Virais/química
20.
Biochim Biophys Acta ; 1828(8): 1889-98, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567917

RESUMO

The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colesterol/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana/química , Transição de Fase , Fosfatidilcolinas/química , Fosfolipídeos/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...